Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
1.
Sci Transl Med ; 16(740): eadl4317, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536937

ABSTRACT

The 2022-2023 mpox outbreak triggered vaccination efforts using smallpox vaccines that were approved for mpox, including modified vaccinia Ankara (MVA; JYNNEOS), which is a safer alternative to live replicating vaccinia virus (ACAM2000). Here, we compare the immunogenicity and protective efficacy of JYNNEOS by the subcutaneous or intradermal routes, ACAM2000 by the percutaneous route, and subunit Ad35 vector-based L1R/B5R or L1R/B5R/A27L/A33R vaccines by the intramuscular route in rhesus macaques. All vaccines provided robust protection against high-dose intravenous mpox virus challenge with the current outbreak strain, with ACAM2000 providing near complete protection and JYNNEOS and Ad35 vaccines providing robust but incomplete protection. Protection correlated with neutralizing antibody responses as well as L1R/M1R- and B5R/B6R-specific binding antibody responses, although additional immune responses likely also contributed to protection. This study demonstrates the protective efficacy of multiple vaccine platforms against mpox virus challenge, including both current clinical vaccines and vectored subunit vaccines.


Subject(s)
Mpox (monkeypox) , Smallpox Vaccine , Animals , Vaccinia virus/genetics , Macaca mulatta , Antibodies, Viral , Vaccines, Subunit
2.
Sci Transl Med ; 15(716): eadg3540, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37792954

ABSTRACT

Mpox virus (MPXV) caused a global outbreak in 2022. Although smallpox vaccines were rapidly deployed to curb spread and disease among those at highest risk, breakthrough disease was noted after complete immunization. Given the threat of additional zoonotic events and the virus's evolving ability to drive human-to-human transmission, there is an urgent need for an MPXV-specific vaccine that confers protection against evolving MPXV strains and related orthopoxviruses. Here, we demonstrate that an mRNA-lipid nanoparticle vaccine encoding a set of four highly conserved MPXV surface proteins involved in virus attachment, entry, and transmission can induce MPXV-specific immunity and heterologous protection against a lethal vaccinia virus (VACV) challenge. Compared with modified vaccinia virus Ankara (MVA), which forms the basis for the current MPXV vaccine, immunization with an mRNA-based MPXV vaccine generated superior neutralizing activity against MPXV and VACV and more efficiently inhibited spread between cells. We also observed greater Fc effector TH1-biased humoral immunity to the four MPXV antigens encoded by the vaccine, as well as to the four VACV homologs. Single MPXV antigen-encoding mRNA vaccines provided partial protection against VACV challenge, whereas multivalent vaccines combining mRNAs encoding two, three, or four MPXV antigens protected against disease-related weight loss and death equal or superior to MVA vaccination. These data demonstrate that an mRNA-based MPXV vaccine confers robust protection against VACV.


Subject(s)
Smallpox Vaccine , Viral Vaccines , Humans , Monkeypox virus/genetics , Vaccinia virus/genetics , Smallpox Vaccine/genetics , Antigens, Viral , RNA, Messenger/genetics
3.
Proc Natl Acad Sci U S A ; 120(35): e2304242120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37607234

ABSTRACT

Zoonotic poxviruses such as mpox virus (MPXV) continue to threaten public health safety since the eradication of smallpox. Vaccinia virus (VACV), the prototypic poxvirus used as the vaccine strain for smallpox eradication, is the best-characterized member of the poxvirus family. VACV encodes a serine protease inhibitor 1 (SPI-1) conserved in all orthopoxviruses, which has been recognized as a host range factor for modified VACV Ankara (MVA), an approved smallpox vaccine and a promising vaccine vector. FAM111A (family with sequence similarity 111 member A), a nuclear protein that regulates host DNA replication, was shown to restrict the replication of a VACV SPI-1 deletion mutant (VACV-ΔSPI-1) in human cells. Nevertheless, the detailed antiviral mechanisms of FAM111A were unresolved. Here, we show that FAM111A is a potent restriction factor for VACV-ΔSPI-1 and MVA. Deletion of FAM111A rescued the replication of MVA and VACV-ΔSPI-1 and overexpression of FAM111A significantly reduced viral DNA replication and virus titers but did not affect viral early gene expression. The antiviral effect of FAM111A necessitated its trypsin-like protease domain and DNA-binding domain but not the PCNA-interacting motif. We further identified that FAM111A translocated into the cytoplasm upon VACV infection by degrading the nuclear pore complex via its protease activity, interacted with VACV DNA-binding protein I3, and promoted I3 degradation through autophagy. Moreover, SPI-1 from VACV, MPXV, or lumpy skin disease virus was able to antagonize FAM111A by prohibiting its nuclear export. Our findings reveal the detailed mechanism by which FAM111A inhibits VACV and provide explanations for the immune evasive function of VACV SPI-1.


Subject(s)
Poxviridae , Smallpox , Vaccinia , Animals , Cattle , Humans , Vaccinia virus/genetics , Serine Proteinase Inhibitors , Viral Proteins/genetics , DNA Replication , Host Specificity , DNA, Viral , Virus Replication , Receptors, Virus
4.
mBio ; 14(2): e0040823, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37017580

ABSTRACT

Viruses with large, double-stranded DNA genomes captured the majority of their genes from their hosts at different stages of evolution. The origins of many virus genes are readily detected through significant sequence similarity with cellular homologs. In particular, this is the case for virus enzymes, such as DNA and RNA polymerases or nucleotide kinases, that retain their catalytic activity after capture by an ancestral virus. However, a large fraction of virus genes have no readily detectable cellular homologs, meaning that their origins remain enigmatic. We explored the potential origins of such proteins that are encoded in the genomes of orthopoxviruses, a thoroughly studied virus genus that includes major human pathogens. To this end, we used AlphaFold2 to predict the structures of all 214 proteins that are encoded by orthopoxviruses. Among the proteins of unknown provenance, structure prediction yielded clear indications of origin for 14 of them and validated several inferences that were previously made via sequence analysis. A notable emerging trend is the exaptation of enzymes from cellular organisms for nonenzymatic, structural roles in virus reproduction that is accompanied by the disruption of catalytic sites and by an overall drastic divergence that precludes homology detection at the sequence level. Among the 16 orthopoxvirus proteins that were found to be inactivated enzyme derivatives are the poxvirus replication processivity factor A20, which is an inactivated NAD-dependent DNA ligase; the major core protein A3, which is an inactivated deubiquitinase; F11, which is an inactivated prolyl hydroxylase; and more similar cases. For nearly one-third of the orthopoxvirus virion proteins, no significantly similar structures were identified, suggesting exaptation with subsequent major structural rearrangement that yielded unique protein folds. IMPORTANCE Protein structures are more strongly conserved in evolution than are amino acid sequences. Comparative structural analysis is particularly important for inferring the origins of viral proteins that typically evolve at high rates. We used a powerful protein structure modeling method, namely, AlphaFold2, to model the structures of all orthopoxvirus proteins and compared them to all available protein structures. Multiple cases of recruitment of host enzymes for structural roles in viruses, accompanied by the disruption of catalytic sites, were discovered. However, many viral proteins appear to have evolved unique structural folds.


Subject(s)
Orthopoxvirus , Poxviridae , Humans , Orthopoxvirus/genetics , Viral Proteins/metabolism , Genes, Viral , Amino Acid Sequence , Poxviridae/genetics
5.
NPJ Vaccines ; 8(1): 47, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36973267

ABSTRACT

SARS-CoV-2 vaccines prevent severe disease but are less efficient in averting infection and transmission of variant strains, making it imperative to explore ways of enhancing protection. Use of inbred mice expressing the human SARS-CoV-2 receptor facilitates such investigations. We employed recombinant MVAs (rMVAs) expressing modified S of several SARS-CoV-2 strains and compared their ability to neutralize variants, bind S proteins and protect K18-hACE2 mice against SARS-CoV-2 challenge when administered intramuscularly or intranasally. The rMVAs expressing Wuhan, Beta and Delta S induced substantial cross neutralizing activities to each other but very low neutralization of Omicron; while rMVA expressing Omicon S induced neutralizing antibody predominanly to Omicron. In mice primed and boosted with rMVA expressing the Wuhan S, neutralizing antibodies to Wuhan increased after one immunization with rMVA expressing Omicron S due to original antigenic sin, but substantial neutralizing antibody to Omicron required a second immunization. Nevertheless, monovalent vaccines with S mismatched to the challenge virus still protected against severe disease and reduced the amounts of virus and subgenomic RNAs in the lungs and nasal turbinates, though not as well as vaccines with matched S. Passive transfer of Wuhan immune serum with Omicron S binding but undetectable neutralizing activity reduced infection of the l-ungs by Omicron suggesting additional effector functions. Notably, there was less infectious virus and viral subgenomic RNAs in the nasal turbinates and lungs when the rMVAs were administered intranasally rather than intramuscularly and this held true for vaccines that were matched or mismatched to the challenge strain of SARS-CoV-2.

6.
Proc Natl Acad Sci U S A ; 120(8): e2220415120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36787354

ABSTRACT

Human mpox (monkeypox), a disease with similarities to smallpox, is endemic in Africa where it has persisted as a zoonosis with limited human-to-human spread. Unexpectedly, the disease expanded globally in 2022 driven by human-to-human transmission outside of Africa. It is not yet known whether the latter is due solely to behavioral and environmental factors or whether the mpox virus is adapting to a new host. Genome sequencing has revealed differences between the current outbreak strains, classified as clade IIb, and the prior clade IIa and clade I viruses, but whether these differences contribute to virulence or transmission has not been determined. We demonstrate that the wild-derived inbred castaneous mouse provides an exceptional animal model for investigating clade differences in mpox virus virulence and show that the order is clade I > clade IIa > clade IIb.1. The greatly reduced replication of the clade IIb.1 major outbreak strain in mice and absence of lethality at 100 times the lethal dose of a closely related clade IIa virus, despite similar multiplication in cell culture, suggest that clade IIb is evolving diminished virulence or adapting to other species.


Subject(s)
Monkeypox virus , Humans , Mice , Animals , Monkeypox virus/genetics , Virulence/genetics , Models, Animal , Disease Outbreaks
7.
PLoS Pathog ; 18(10): e1010662, 2022 10.
Article in English | MEDLINE | ID: mdl-36215331

ABSTRACT

We have recently shown that the replication of rhinovirus, poliovirus and foot-and-mouth disease virus requires the co-translational N-myristoylation of viral proteins by human host cell N-myristoyltransferases (NMTs), and is inhibited by treatment with IMP-1088, an ultrapotent small molecule NMT inhibitor. Here, we examine the importance of N-myristoylation during vaccinia virus (VACV) infection in primate cells and demonstrate the anti-poxviral effects of IMP-1088. N-myristoylated proteins from VACV and the host were metabolically labelled with myristic acid alkyne during infection using quantitative chemical proteomics. We identified VACV proteins A16, G9 and L1 to be N-myristoylated. Treatment with NMT inhibitor IMP-1088 potently abrogated VACV infection, while VACV gene expression, DNA replication, morphogenesis and EV formation remained unaffected. Importantly, we observed that loss of N-myristoylation resulted in greatly reduced infectivity of assembled mature virus particles, characterized by significantly reduced host cell entry and a decline in membrane fusion activity of progeny virus. While the N-myristoylation of VACV entry proteins L1, A16 and G9 was inhibited by IMP-1088, mutational and genetic studies demonstrated that the N-myristoylation of L1 was the most critical for VACV entry. Given the significant genetic identity between VACV, monkeypox virus and variola virus L1 homologs, our data provides a basis for further investigating the role of N-myristoylation in poxviral infections as well as the potential of selective NMT inhibitors like IMP-1088 as broad-spectrum poxvirus inhibitors.


Subject(s)
Vaccinia virus , Vaccinia , Animals , Humans , Alkynes , Myristic Acid/metabolism , Vaccinia/metabolism , Vaccinia virus/genetics , Viral Proteins/metabolism , Virion/metabolism , Virus Internalization
8.
Proc Natl Acad Sci U S A ; 119(24): e2202069119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35679343

ABSTRACT

Current vaccines have greatly diminished the severity of the COVID-19 pandemic, even though they do not entirely prevent infection and transmission, likely due to insufficient immunity in the upper respiratory tract. Here, we compare intramuscular and intranasal administration of a live, replication-deficient modified vaccinia virus Ankara (MVA)-based Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike (S) vaccine to raise protective immune responses in the K18-hACE2 mouse model. Using a recombinant MVA expressing firefly luciferase for tracking, live imaging revealed luminescence of the respiratory tract of mice within 6 h and persisting for 3 d following intranasal inoculation, whereas luminescence remained at the site of intramuscular vaccination. Intramuscular vaccination induced S-binding-Immunoglobulin G (IgG) and neutralizing antibodies in the lungs, whereas intranasal vaccination also induced Immunoglobulin A (IgA) and higher levels of antigen-specific CD3+CD8+IFN-γ+ T cells. Similarly, IgG and neutralizing antibodies were present in the blood of mice immunized intranasally and intramuscularly, but IgA was detected only after intranasal inoculation. Intranasal boosting increased IgA after intranasal or intramuscular priming. While intramuscular vaccination prevented morbidity and cleared SARS-CoV-2 from the respiratory tract within several days after challenge, intranasal vaccination was more effective as neither infectious virus nor viral messenger (m)RNAs were detected in the nasal turbinates or lungs as early as 2 d after challenge, indicating prevention or rapid elimination of SARS-CoV-2 infection. Additionally, we determined that neutralizing antibody persisted for more than 6 mo and that serum induced to the Wuhan S protein neutralized pseudoviruses expressing the S proteins of variants, although with less potency, particularly for Beta and Omicron.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunoglobulin A , Respiratory System , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccinia virus , Administration, Intranasal , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Mice , Mice, Transgenic , Respiratory System/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vaccinia virus/genetics , Vaccinia virus/immunology
9.
mBio ; 13(1): e0010222, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35189701

ABSTRACT

Although providing long-lasting immunity, smallpox vaccination was associated with local and systemic reactions and rarely with severe complications, including progressive vaccinia and postvaccinia encephalitis. As the Dryvax smallpox vaccine consists of a population of variants, we investigated a particularly pathogenic isolate called clone 3 (CL3). Virus replication was monitored by inserting the gene encoding firefly luciferase (Luc) into the genomes of CL3 and ACAM2000, the second-generation smallpox vaccine derived from a less virulent clone. Greater luminescence occurred following intranasal or intraperitoneal inoculation of mice with CL3-Luc than ACAM2000-Luc. Previous genome sequencing of CL3 and ACAM2000 revealed numerous differences that could affect pathogenicity. We focused on a 4.2-kbp segment, containing several open reading frames, in CL3 that is absent from ACAM2000 and determined that lower virulence of the latter was associated with a truncation of the interferon α/ß (IFN-α/ß) decoy receptor. Truncation of the decoy receptor in CL3-Luc and repair of the truncated version in ACAM2000-Luc decreased and increased virulence, respectively. Blockade of the mouse type 1 IFN receptor increased the virulence of ACAM2000-Luc to that of CL3-Luc, consistent with the role of IFN in attenuating the former. The severities of disease following intracranial inoculation of immunocompetent mice and intraperitoneal inoculation of T cell-depleted mice were also greater in viruses expressing the full-length decoy receptor. Previous evidence for the low affinity of a similarly truncated decoy receptor for IFN and the presence of a full-length decoy receptor in virus isolated from a patient with progressive vaccinia support our findings. IMPORTANCE Attenuated live viruses make effective vaccines, although concerns exist due to infrequent complications, particularly in individuals with immunological defects. Such complications occurred with smallpox vaccines, which were shown to be comprised of populations of variants. Clone 3, isolated from Dryvax, the vaccine most widely used in the United States during the smallpox eradication campaign, was particularly pathogenic in animal models. We demonstrated that the full-length IFN-α/ß decoy receptor in CL3 and a truncation of the receptor in the clone used for the second-generation smallpox vaccine ACAM2000 account for their difference in pathogenicity. Viruses expressing the full-length decoy receptor were more virulent following intranasal, intraperitoneal, or intracranial inoculation of mice than ACAM2000, and disease was exacerbated following T cell depletion. Correspondingly, the full-length decoy receptor is present in smallpox vaccines with high rates of side effects and in a Dryvax clone obtained from a lesion in a patient with progressive vaccinia.


Subject(s)
Smallpox Vaccine , Smallpox , Vaccinia , Animals , Antibodies, Viral , Antigens, Viral , Interferon-alpha , Mice , Smallpox/prevention & control , Smallpox Vaccine/adverse effects , Smallpox Vaccine/genetics , Vaccinia/chemically induced , Vaccinia/epidemiology , Vaccinia virus/genetics , Virulence
11.
J Virol ; 95(19): e0110421, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34232734

ABSTRACT

Modified vaccinia virus Ankara (MVA) was derived by repeated passaging in chick fibroblasts, during which deletions and mutations rendered the virus unable to replicate in most mammalian cells. Marker rescue experiments demonstrated that the host range defect could be overcome by replacing DNA that had been deleted from near the left end of the genome. One virus isolate, however, recovered the ability to replicate in monkey BS-C-1 cells but not human cells without added DNA, suggesting that it arose from a spontaneous mutation. Here, we showed that variants with enhanced ability to replicate in BS-C-1 cells could be isolated by blind passaging of MVA and that in each there was a point mutation leading to an amino acid substitution in the D10 decapping enzyme. The sufficiency of these single mutations to enhance host range was confirmed by constructing recombinant viruses. The D10 mutations occurred at N- or C-terminal locations distal to the active site, suggesting an indirect effect on decapping or on another previously unknown role of D10. Although increased amounts of viral mRNA and proteins were found in BS-C-1 cells infected with the mutants compared to those with parental MVA, the increases were much less than the 1- to 2-log-higher virus yields. Nevertheless, a contributing role for diminished decapping in overcoming the host range defect was consistent with increased replication and viral protein synthesis in BS-C-1 cells infected with an MVA engineered to have active-site mutations that abrogate decapping activity entirely. Optimal decapping may vary depending on the biological context. IMPORTANCE Modified vaccinia virus Ankara (MVA) is an attenuated virus that is approved as a smallpox vaccine and is in clinical trials as a vector for other pathogens. The safety of MVA is due in large part to its inability to replicate in mammalian cells. Although host range restriction is considered a stable feature of the virus, we describe the occurrence of spontaneous mutations in MVA that increase replication considerably in monkey BS-C-1 cells but only slightly in human cells. The mutants contain single nucleotide changes that lead to amino acid substitutions in one of the two decapping enzymes. Although the spontaneous mutations are distant from the decapping enzyme active site, engineered active-site mutations also increased virus replication in BS-C-1 cells. The effects of these mutations on the immunogenicity of MVA vectors remain to be determined.


Subject(s)
Nucleotidases/genetics , Nucleotidases/metabolism , Vaccinia virus/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Animals , Catalytic Domain , Cell Line , Chick Embryo , Chlorocebus aethiops , Homologous Recombination , Host Specificity , Humans , Nucleotidases/chemistry , Open Reading Frames , Point Mutation , RNA, Messenger/metabolism , RNA, Viral/metabolism , Sequence Deletion , Vaccinia virus/genetics , Viral Plaque Assay , Viral Proteins/chemistry , Virus Replication
12.
mBio ; 12(4): e0149521, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34253028

ABSTRACT

The survival of viruses depends on their ability to resist host defenses and, of all animal virus families, the poxviruses have the most antidefense genes. Orthopoxviruses (ORPV), a genus within the subfamily Chordopoxvirinae, infect diverse mammals and include one of the most devastating human pathogens, the now eradicated smallpox virus. ORPV encode ∼200 genes, of which roughly half are directly involved in virus genome replication and expression as well as virion morphogenesis. The remaining ∼100 "accessory" genes are responsible for virus-host interactions, particularly counter-defense of innate immunity. Complete sequences are currently available for several hundred ORPV genomes isolated from a variety of mammalian hosts, providing a rich resource for comparative genomics and reconstruction of ORPV evolution. To identify the provenance and evolutionary trends of the ORPV accessory genes, we constructed clusters including the orthologs of these genes from all chordopoxviruses. Most of the accessory genes were captured in three major waves early in chordopoxvirus evolution, prior to the divergence of ORPV and the sister genus Centapoxvirus from their common ancestor. The capture of these genes from the host was followed by extensive gene duplication, yielding several paralogous gene families. In addition, nine genes were gained during the evolution of ORPV themselves. In contrast, nearly every accessory gene was lost, some on multiple, independent occasions in numerous lineages of ORPV, so that no ORPV retains them all. A variety of functional interactions could be inferred from examination of pairs of ORPV accessory genes that were either often or rarely lost concurrently. IMPORTANCE Orthopoxviruses (ORPV) include smallpox (variola) virus, one of the most devastating human pathogens, and vaccinia virus, comprising the vaccine used for smallpox eradication. Among roughly 200 ORPV genes, about half are essential for genome replication and expression as well as virion morphogenesis, whereas the remaining half consists of accessory genes counteracting the host immune response. We reannotated the accessory genes of ORPV, predicting the functions of uncharacterized genes, and reconstructed the history of their gain and loss during the evolution of ORPV. Most of the accessory genes were acquired in three major waves antedating the origin of ORPV from chordopoxviruses. The evolution of ORPV themselves was dominated by gene loss, with numerous genes lost at the base of each major group of ORPV. Examination of pairs of ORPV accessory genes that were either often or rarely lost concurrently during ORPV evolution allows prediction of different types of functional interactions.


Subject(s)
Evolution, Molecular , Genome, Viral , Host Microbial Interactions/genetics , Orthopoxvirus/genetics , Animals , Genomics , Humans , Mice , Phylogeny , Viral Proteins/metabolism , Virus Replication
13.
J Virol ; 95(16): e0085221, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34076488

ABSTRACT

Poxviruses are exceptional in having a complex entry-fusion complex (EFC) that is comprised of 11 conserved proteins embedded in the membrane of mature virions. However, the detailed architecture is unknown and only a few bimolecular protein interactions have been demonstrated by coimmunoprecipitation from detergent-treated lysates and by cross-linking. Here, we adapted the tripartite split green fluorescent protein (GFP) complementation system in order to analyze EFC protein contacts within living cells. This system employs a detector fragment called GFP1-9 comprised of nine GFP ß-strands. To achieve fluorescence, two additional 20-amino-acid fragments called GFP10 and GFP11 attached to interacting proteins are needed, providing the basis for identification of the latter. We constructed a novel recombinant vaccinia virus (VACV-GFP1-9) expressing GFP1-9 under a viral early/late promoter and plasmids with VACV late promoters regulating each of the EFC proteins with GFP10 or GFP11 attached to their ectodomains. GFP fluorescence was detected by confocal microscopy at sites of virion assembly in cells infected with VACV-GFP1-9 and cotransfected with plasmids expressing one EFC-GFP10 and one EFC-GFP11 interacting protein. Flow cytometry provided a quantitative way to determine the interaction of each EFC-GFP10 protein with every other EFC-GFP11 protein in the context of a normal infection in which all viral proteins are synthesized and assembled. Previous EFC protein interactions were confirmed, and new ones were discovered and corroborated by additional methods. Most remarkable was the finding that the small, hydrophobic O3 protein interacted with each of the other EFC proteins. IMPORTANCE Poxviruses are enveloped viruses with a DNA-containing core that enters cells following fusion of viral and host membranes. This essential step is a target for vaccines and therapeutics. The entry-fusion complex (EFC) of poxviruses is unusually complex and comprised of 11 conserved viral proteins. Determination of the structure of the EFC is a prerequisite for understanding the fusion mechanism. Here, we used a tripartite split green fluorescent protein assay to determine the proximity of individual EFC proteins in living cells. A network connecting components of the EFC was derived.


Subject(s)
Poxviridae/physiology , Viral Fusion Proteins/metabolism , Virus Internalization , Animals , Cell Line , Cytoplasm/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Protein Binding , Vaccinia virus/genetics , Vaccinia virus/metabolism , Vaccinia virus/physiology , Viral Fusion Proteins/genetics
14.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33688035

ABSTRACT

Modified vaccinia virus Ankara (MVA) is a replication-restricted smallpox vaccine, and numerous clinical studies of recombinant MVAs (rMVAs) as vectors for prevention of other infectious diseases, including COVID-19, are in progress. Here, we characterize rMVAs expressing the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Modifications of full-length S individually or in combination included two proline substitutions, mutations of the furin recognition site, and deletion of the endoplasmic retrieval signal. Another rMVA in which the receptor binding domain (RBD) is flanked by the signal peptide and transmembrane domains of S was also constructed. Each modified S protein was displayed on the surface of rMVA-infected cells and was recognized by anti-RBD antibody and soluble hACE2 receptor. Intramuscular injection of mice with the rMVAs induced antibodies, which neutralized a pseudovirus in vitro and, upon passive transfer, protected hACE2 transgenic mice from lethal infection with SARS-CoV-2, as well as S-specific CD3+CD8+IFNγ+ T cells. Antibody boosting occurred following a second rMVA or adjuvanted purified RBD protein. Immunity conferred by a single vaccination of hACE2 mice prevented morbidity and weight loss upon intranasal infection with SARS-CoV-2 3 wk or 7 wk later. One or two rMVA vaccinations also prevented detection of infectious SARS-CoV-2 and subgenomic viral mRNAs in the lungs and greatly reduced induction of cytokine and chemokine mRNAs. A low amount of virus was found in the nasal turbinates of only one of eight rMVA-vaccinated mice on day 2 and none later. Detection of low levels of subgenomic mRNAs in turbinates indicated that replication was aborted in immunized animals.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Genetic Vectors/genetics , SARS-CoV-2/immunology , Vaccines, DNA/immunology , Vaccinia virus/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Specificity/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Disease Models, Animal , Gene Expression , Humans , Immunization , Immunization, Passive , Immunoglobulin G/immunology , Mice , Mice, Transgenic , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics
15.
J Virol ; 95(8)2021 03 25.
Article in English | MEDLINE | ID: mdl-33504600

ABSTRACT

Eleven highly conserved proteins comprise the poxvirus entry-fusion complex (EFC). We focused on vaccinia virus (VACV) O3, a 35-amino acid, largely hydrophobic component of unknown specific function. Experimental evolution was carried out by blindly passaging a virus that was severely impaired in entry due to deletion of the gene encoding O3. Large plaque variants that arose spontaneously were discerned by round four and their numbers increased thereafter. Genome sequencing of individual cloned viruses revealed mutations in predicted transmembrane domains of three open reading frames encoding proteins with roles in entry. There were frame-shift mutations in consecutive Ts in open reading frames F9L and D8L and a nonsynonymous base substitution in L5R. F9 and L5 are EFC proteins and D8 is involved in VACV cell attachment. The F9L mutation occurred by round four in each of three independant passages, whereas the L5R and D8L mutations were detected only after nearly all of the genomes already had the F9L mutation. Viruses with deletions of O3L and single or double F9L, L5R and D8L mutations were constructed by homologous recombination. In a single round of infection, viruses with adaptive mutations including F9L alone or in combination exhibited statistically significant higher virus titers than the parental O3L deletion mutant or the L5R or D8L mutants, consistent with the order of selection during the passages. Further analyses indicated that the adaptive F9L mutants also had higher infectivities, entered cells more rapidly and increased EFC assembly, which partially compensated for the loss of O3.IMPORTANCE Entry into cells is an essential first step in virus replication and an important target of vaccine- elicited immunity. For enveloped viruses, this step involves the fusion of viral and host membranes to form a pore allowing entry of the genome and associated proteins. Poxviruses are unique in that this function is mediated by an entry-fusion complex (EFC) of eleven transmembrane proteins rather than by one or a few. The large number of proteins has hindered investigation of their individual roles. We focused on O3, a predominantly hydrophobic 35 amino acid component of the vaccinia virus EFC, and found that spontaneous mutations in the transmembrane domains of certain other entry proteins can partially compensate for the absence of O3. The mutants exhibited increased infectivity, entry and assembly or stability of the EFC.

16.
bioRxiv ; 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33442693

ABSTRACT

Replication-restricted modified vaccinia virus Ankara (MVA) is a licensed smallpox vaccine and numerous clinical studies investigating recombinant MVAs (rMVAs) as vectors for prevention of other infectious diseases have been completed or are in progress. Two rMVA COVID-19 vaccine trials are at an initial stage, though no animal protection studies have been reported. Here, we characterize rMVAs expressing the S protein of CoV-2. Modifications of full length S individually or in combination included two proline substitutions, mutations of the furin recognition site and deletion of the endoplasmic retrieval signal. Another rMVA in which the receptor binding domain (RBD) flanked by the signal peptide and transmembrane domains of S was also constructed. Each modified S protein was displayed on the surface of rMVA-infected human cells and was recognized by anti-RBD antibody and by soluble hACE2 receptor. Intramuscular injection of mice with the rMVAs induced S-binding and pseudovirus-neutralizing antibodies. Boosting occurred following a second homologous rMVA but was higher with adjuvanted purified RBD protein. Weight loss and lethality following intranasal infection of transgenic hACE2 mice with CoV-2 was prevented by one or two immunizations with rMVAs or by passive transfer of serum from vaccinated mice. One or two rMVA vaccinations also prevented recovery of infectious CoV-2 from the lungs. A low amount of virus was detected in the nasal turbinates of only one of eight rMVA-vaccinated mice on day 2 and none later. Detection of subgenomic mRNA in turbinates on day 2 only indicated that replication was abortive in immunized animals.

17.
J Virol ; 94(24)2020 11 23.
Article in English | MEDLINE | ID: mdl-33028714

ABSTRACT

Given the complex biology of human immunodeficiency virus (HIV) and its remarkable capacity to evade host immune responses, HIV vaccine efficacy may benefit from the induction of both humoral and cellular immune responses of maximal breadth, potency, and longevity. Guided by this rationale, we set out to develop an immunization protocol aimed at maximizing the induction of anti-Envelope (anti-Env) antibodies and CD8+ T cells targeting non-Env epitopes in rhesus macaques (RMs). Our approach was to deliver the entire simian immunodeficiency virus (SIV) proteome by serial vaccinations. To that end, 12 RMs were vaccinated over 81 weeks with DNA, modified vaccinia Ankara (MVA), vesicular stomatitis virus (VSV), adenovirus type 5 (Ad5), rhesus monkey rhadinovirus (RRV), and DNA again. Both the RRV and the final DNA boosters delivered a near-full-length SIVmac239 genome capable of assembling noninfectious SIV particles and inducing T-cell responses against all nine SIV proteins. Compared to previous SIV vaccine trials, the present DNA-MVA-VSV-Ad5-RRV-DNA regimen resulted in comparable levels of Env-binding antibodies and SIV-specific CD8+ T-cells. Interestingly, one vaccinee developed low titers of neutralizing antibodies (NAbs) against SIVmac239, a tier 3 virus. Following repeated intrarectal marginal-dose challenges with SIVmac239, vaccinees were not protected from SIV acquisition but manifested partial control of viremia. Strikingly, the animal with the low-titer vaccine-induced anti-SIVmac239 NAb response acquired infection after the first SIVmac239 exposure. Collectively, these results highlight the difficulties in eliciting protective immunity against immunodeficiency virus infection.IMPORTANCE Our results are relevant to HIV vaccine development efforts because they suggest that increasing the number of booster immunizations or delivering additional viral antigens may not necessarily improve vaccine efficacy against immunodeficiency virus infection.


Subject(s)
Immunity , Proteome , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing , Antibodies, Viral/immunology , Antigens, Viral , CD8-Positive T-Lymphocytes/immunology , Humans , Immunization, Secondary , Macaca mulatta/immunology , Vaccination , Viral Load , Viremia
18.
PLoS Pathog ; 16(8): e1008845, 2020 08.
Article in English | MEDLINE | ID: mdl-32866210

ABSTRACT

Modified vaccinia virus Ankara (MVA) is an approved smallpox vaccine and a promising vaccine vector for other pathogens as well as for cancer therapeutics with more than 200 current or completed clinical trials. MVA was derived by passaging the parental Ankara vaccine virus hundreds of times in chick embryo fibroblasts during which it lost the ability to replicate in human and most other mammalian cells. Although this replication deficiency is an important safety feature, the genetic basis of the host restriction is not understood. Here, an unbiased human genome-wide RNAi screen in human A549 cells revealed that the zinc-finger antiviral protein (ZAP), previously shown to inhibit certain RNA viruses, is a host restriction factor for MVA, a DNA virus. Additional studies demonstrated enhanced MVA replication in several human cell lines following knockdown of ZAP. Furthermore, CRISPR-Cas9 knockout of ZAP in human A549 cells increased MVA replication and spread by more than one log but had no effect on a non-attenuated strain of vaccinia virus. The intact viral C16 protein, which had been disrupted in MVA, antagonized ZAP by binding and sequestering the protein in cytoplasmic punctate structures. Studies aimed at exploring the mechanism by which ZAP restricts MVA replication in the absence of C16 showed that knockout of ZAP had no discernible effect on viral DNA or individual mRNA or protein species as determined by droplet digital polymerase chain reaction, deep RNA sequencing and mass spectrometry, respectively. Instead, inactivation of ZAP reduced the number of aberrant, dense, spherical particles that typically form in MVA-infected human cells, suggesting that ZAP has a novel role in interfering with a late step in the assembly of infectious MVA virions in the absence of the C16 protein.


Subject(s)
RNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , Vaccinia virus/physiology , Virus Replication/physiology , A549 Cells , Animals , Chickens , Cytoplasm/metabolism , Cytoplasm/virology , DNA, Viral/genetics , DNA, Viral/metabolism , Gene Knockdown Techniques , Humans , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Seq , Repressor Proteins/genetics
19.
J Virol ; 94(18)2020 08 31.
Article in English | MEDLINE | ID: mdl-32669330

ABSTRACT

Unlike RNA viruses, most DNA viruses replicate their genomes with high-fidelity polymerases that rarely make base substitution errors. Nevertheless, experimental evolution studies have revealed rapid acquisition of adaptive mutations during serial passage of attenuated vaccinia virus (VACV). One way in which adaptation can occur is by an accordion mechanism in which the gene copy number increases followed by base substitutions and, finally, contraction of the gene copy number. Here, we show rapid acquisition of multiple adaptive mutations mediated by a gene-inactivating frameshift mechanism during passage of an attenuated VACV. Attenuation had been achieved by exchanging the VACV A8R intermediate transcription factor gene with the myxoma virus ortholog. A total of seven mutations in six different genes occurred in three parallel passages of the attenuated virus. The most frequent mutations were single-nucleotide insertions or deletions within runs of five to seven As or Ts, although a deletion of 11 nucleotides also occurred, leading to frameshifts and premature stop codons. During 10 passage rounds, the attenuated VACV was replaced by the mutant viruses. At the end of the experiment, virtually all remaining viruses had one fixed mutation and one or more additional mutations. Although nucleotide substitutions in the transcription apparatus accounted for two low-frequency mutations, frameshifts in genes encoding protein components of the mature virion, namely, A26L, G6R, and A14.5L, achieved 74% to 98% fixation. The adaptive role of the mutations was confirmed by making recombinant VACV with A26L or G6R or both deleted, which increased virus replication levels and decreased particle/PFU ratios.IMPORTANCE Gene inactivation is considered to be an important driver of orthopoxvirus evolution. Whereas cowpox virus contains intact orthologs of genes present in each orthopoxvirus species, numerous genes are inactivated in all other members of the genus. Inactivation of additional genes can occur upon extensive passaging of orthopoxviruses in cell culture leading to attenuation in vivo, a strategy for making vaccines. Whether inactivation of multiple viral genes enhances replication in the host cells or has a neutral effect is unknown in most cases. Using an experimental evolution protocol involving serial passages of an attenuated vaccinia virus, rapid acquisition of inactivating frameshift mutations occurred. After only 10 passage rounds, the starting attenuated vaccinia virus was displaced by viruses with one fixed mutation and one or more additional mutations. The high frequency of multiple inactivating mutations during experimental evolution simulates their acquisition during normal evolution and extensive virus passaging to make vaccine strains.


Subject(s)
Adaptation, Biological/genetics , Frameshift Mutation , Myxoma virus/genetics , Transcription Factors/genetics , Vaccinia virus/genetics , Viral Proteins/genetics , Animals , Base Sequence , Cell Line , Chlorocebus aethiops , Codon, Nonsense , Epithelial Cells/metabolism , Epithelial Cells/virology , Gene Dosage , Genetic Fitness , Myxoma virus/metabolism , Rabbits , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombination, Genetic , Transcription Factors/metabolism , Vaccinia virus/metabolism , Viral Proteins/metabolism , Virus Replication , Whole Genome Sequencing
20.
Annu Rev Virol ; 7(1): 15-36, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32392458

ABSTRACT

My scientific career started at an extraordinary time, shortly after the discoveries of the helical structure of DNA, the central dogma of DNA to RNA to protein, and the genetic code. Part I of this series emphasizes my education and early studies highlighted by the isolation and characterization of numerous vaccinia virus enzymes, determination of the cap structure of messenger RNA, and development of poxviruses as gene expression vectors for use as recombinant vaccines. Here I describe a shift in my research focus to combine molecular biology and genetics for a comprehensive understanding of poxvirus biology. The dominant paradigm during the early years was to select a function, isolate the responsible proteins, and locate the corresponding gene, whereas later the common paradigm was to select a gene, make a mutation, and determine the altered function. Motivations, behind-the-scenes insights, importance of new technologies, and the vital roles of trainees and coworkers are emphasized.


Subject(s)
Molecular Biology , Research/education , Vaccinia virus/genetics , Virology , Humans , Narration , Vaccinia virus/immunology , Viral Proteins/genetics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...